MCR3U1

Date:

\qquad

The Exponential Function

Frodo accepted to cut his uncle Bilbo Baggins' lawn for 8 weeks in the summer. Little did he know that he was going to embark on a journey to destroy the Lord of the Rings. Bilbo offered to pay him $\$ 5$ Shire dollars per week, plus a $\$ 10$ bonus. However, Frodo had something else in mind and proposed getting paid 3 cents the first week, 9 cents the second week, 27 cents the third week, and so on, with each subsequent week's pay being 3 times that of the previous week. If you were Bilbo, would you accept Frodo's proposal?
$\begin{aligned} \text { Method 1: } C & =5(8)+10 \\ & =50\end{aligned}$

Method 2:

WAGE

Recall: If the first differences are equal, it is linear; the second differences are equal it is quadratic relationship.
Is there a pattern in the first differences?
The consecutive one is 3 times the previous.
What do you notice about the entries in the wage column?
The entries grow by 3 .

How would you express this relationship algebraically?
Nape $=3^{x}$

1. a. Using the table of values, draw each exponential function.

$$
y=\left(\frac{1}{3}\right)^{x}
$$

\mathbf{x}	$\boldsymbol{y}=\mathbf{2}^{x}$
-3	$2^{-3}=1 / 8$
-2	$2^{-2}=1 / 4$
-1	$2^{-1}=1 / 2$
0	$2^{0}=1$
1	$21=2$
2	$2^{2}=4$
3	$2^{3}=8$

x	$y=3^{x}$
-3	$3^{-3}=1 / 27$
-2	$3^{-2}=1 / 9$
-1	$3^{-1}=1 / 3$
0	$3^{0}=1$
1	$3^{1}=3$
2	$3^{2}=9$
3	$3^{3}=27$

\mathbf{x}	$y=\left(\frac{1}{2}\right)^{x}$
-3	$\left(\frac{1}{2}\right)^{-3}=8$
-2	4
-1	2
0	1
1	$1 / 2$
2	$1 / 4$
3	$1 / 8$

\mathbf{x}	$y=\left(\frac{1}{3}\right)^{x}$
-3	$\left(\frac{1}{3}\right)^{-3}=27$
-2	9
-1	3
0	1
1	$1 / 3$
2	$1 / 9$
3	$1 / 27$

horizontal asymptote ($y=0$)
) horizontal asymptote
(1,1)
c. As the x values increase what do you notice about the y values?

As x approaches + infinity $(+\infty)$, y values increase.
d. As the x values decrease what do you notice about the y values?

As x approaches "-" infinity (- $-\infty$), y values decreox
d. Do you think this graph will ever intersect with $\mathrm{y}=0$ line (x axis)?

No, because y is not going to be zero
f. State the domain and range: HORIZONIAL ASYMD TOTE

$y=2^{x}$	$y=3^{x}$
D: $\{x \in R\}$	D: $\{x \in R\}$
R: $\{y \in R \mid y>0\}$	R: $\{y \in R \mid y>0\}$

g . What are the common characteristics of these curves?
same domain - Increasing graph (GROWTH)
-som range - y-int.
b. What is y-intercept for each of the graphs? Label it on the plane. (0,1)
c. As the x values increase what do you notice about the y values?

They decrease. As you go right horizontally, y values
d. As the x values decrease what do you notice about the y values?

As you go left horizontally, y values increax.
d. Do you think this graph will ever intersect with $\mathrm{y}=0$ line (x axis)?

No. HORIZONTAL ASYMPTOTE $y=0$ line
f. State the domain and range:

$y=\left(\frac{1}{2}\right)^{x}$		
D: $\{y \in R\}$	D: $\left.\frac{1}{3}\right)^{x}$	
R: $\{y \in R \mid y>0\}$	R:	$\{y \in R \mid y>0\}$

g. What are the common characteristics of these curves?

- same domain - decreasing graph (DECAY)
- same range - y-int

MCR3U1

Notes about Exponential Functions

The exponential function $f(x)=b^{x}$ is to be added to our list of parent functions.
Exponential functions can be used to model population growth or the temperature of a liquid as it cools off.
When $b>1$, the exponential function decreases to the left and increases to the right. This is called exponential growth.

When $0<b<1$, the exponential function increases to the left and decreases to the right. This is called exponential decay.
The x-axis is called a horizontal quymptote for all 4 graphs.
The equation of this line is
 .

The domain of $f(x)=b^{x}$ is $\{x \in R\}$.
The range of $f(x)=b^{x}$ is $\left\{y \in R(y>0\}, \begin{array}{l}y \text { in an element of Reel \#s } \\ y \text { is g eater then } 0\end{array}\right.$ The y-intercept of $f(x)=b^{x}$ is $(0,1)$.

