
The Exponential Function

Frodo accepted to cut his uncle Bilbo Baggins' lawn for 8 weeks in the summer. Little did he know that he was going to embark on a journey to destroy the Lord of the Rings. Bilbo offered to pay him \$5 Shire dollars per week, plus a \$10 bonus. However, Frodo had something else in mind and proposed getting paid 3 cents the first week, 9 cents the second week, 27 cents the third week, and so on, with each subsequent week's pay being 3 times that of the previous week. If you were Bilbo, would you accept Frodo's proposal?

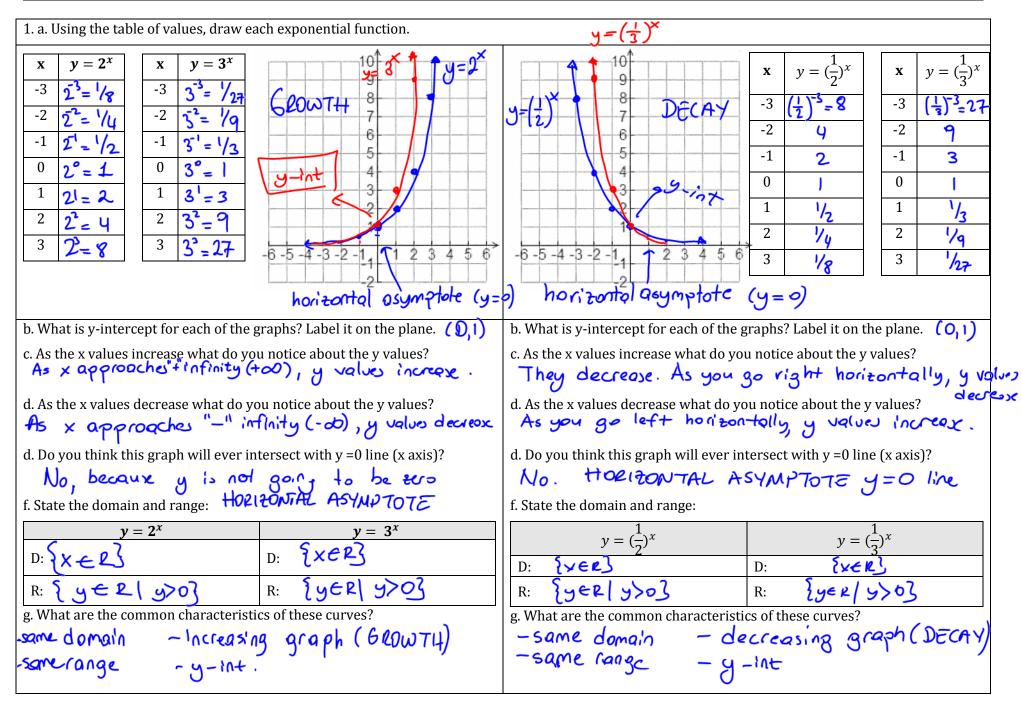
Method 1: C = 5(8) + 10 = 50

Recall: If the first differences are equal, it is linear; the second differences are equal it is quadratic relationship.

Is there a pattern in the first differences? The consecutive one is 3 times the previous.

What do you notice about the entries in the wage column?

The entries grow by 3.


How would you express this relationship algebraically?

Wape = 3^x

MCR3U1 Day 4: Graphing Exponential Functions

Date:_____

Notes about Exponential Functions

The exponential function $f(x) = b^x$ is to be added to our list of parent functions.

Exponential functions can be used to model population **growth** or the temperature of a liquid as it cools off.

When b > 1, the exponential function decreases to the left and increases to the right. This is called <u>exponential</u> <u>growth</u>.

When 0 < b < 1, the exponential function increases to the left and decreases to the right. This is called <u>exponential</u> <u>decay</u>.

The x-axis is called a	horizontal	Roym	ptote for all 4 graphs.

The equation of this line is $y = 0$.	
The domain of $f(x) = b^x$ is $[x \in P]$.	
The range of $f(x) = b^x$ is $\underbrace{Y \in R[y]}_{y \in R[y]}$	y in an element of Reel #s y is greater than 0
The y-intercept of $f(x) = b^x$ is $(0, l)$.	0 0