1) THE SINE LAW

Solving for side

$$
\frac{a}{\sin A}=\frac{b}{\sin B}
$$

Solving for angle

$$
\frac{\sin A}{a}=\frac{\sin B}{b}
$$

The Sine Law Practice

1. Solve for the given variable (correct to 1 decimal place) in each of the following:
(a) $\frac{a}{\sin 35^{\circ}}=\frac{10}{\sin 40^{\circ}}$
(b) $\frac{65}{\sin 75^{\circ}}=\frac{b}{\sin 48^{\circ}}$
(c) $\frac{75}{\sin 55^{\circ}}=\frac{c}{\sin 80^{\circ}}$
2. For each of the following diagrams write the equation you would use to solve for the indicated

3. Solve for each of the required variables from Question \#2.
4. For each of the following triangle descriptions you should make a sketch and then find the indicated side rounded correctly to one decimal place.
(a) In $\triangle \mathrm{ABC}$, given that $\angle \mathrm{A}=57^{\circ}, \angle \mathrm{B}=73^{\circ}$, and $\mathrm{AB}=24 \mathrm{~cm}$. Find the length of AC
(b) In $\triangle \mathrm{ABC}$, given that $\angle \mathrm{B}=38^{\circ}, \angle \mathrm{C}=56^{\circ}$, and $\mathrm{BC}=63 \mathrm{~cm}$. Find the length of AB
(c) In $\triangle \mathrm{ABC}$, given that $\angle \mathrm{A}=50^{\circ}, \angle \mathrm{B}=50^{\circ}$, and $\mathrm{AC}=27 \mathrm{~m}$. Find the length of AB
(d) In $\triangle \mathrm{ABC}$, given that $\angle \mathrm{A}=23^{\circ}, \angle \mathrm{C}=78^{\circ}$, and $\mathrm{AB}=15 \mathrm{~cm}$. Find the length of BC
(e) In $\triangle \mathrm{ABC}$, given that $\angle \mathrm{A}=55^{\circ}, \angle \mathrm{B}=32^{\circ}$, and $\mathrm{BC}=77 \mathrm{~cm}$. Find the length of AC
(f) In $\triangle \mathrm{ABC}$, given that $\angle \mathrm{B}=14^{\circ}, \angle \mathrm{C}=78^{\circ}$, and $\mathrm{AC}=36 \mathrm{~m}$. Find the length of BC

Challenge: The angle of elevation to the top C of a building from two points A and B on level ground are 50 degrees and 60 degrees respectively. The distance between points A and B is 30 meters. Points A, B and C are in the same vertical plane. Find the height h of the building (round your answer to the nearest unit).

$$
\begin{aligned}
& \frac{d}{\sin 50}=\frac{30}{\sin 10} \Rightarrow d=\frac{30 \sin 50}{\sin 10}=132.34 \\
& \begin{aligned}
\sin 60=\frac{h}{d} \Rightarrow h & =d \cdot \sin 60 \\
& =132.34 \sin 60 \\
h & =114.62
\end{aligned}
\end{aligned}
$$

\therefore The height is 115 m .

The Cosine Law Practice

1. For each of the following diagrams write the equation you would use to solve for the indicated variable:

2. Solve for each of the required variables from Question \#1.
3. For each of the following triangle descriptions you should make a sketch and then find the indicated value.
(a) In $\triangle \mathrm{ABC}$, given that $\mathrm{AB}=24 \mathrm{~cm}, \mathrm{AC}=34 \mathrm{~cm}$, and $\angle \mathrm{A}=67^{\circ}$. Find the length of BC
(b) In $\triangle \mathrm{ABC}$, given that $\mathrm{AB}=15 \mathrm{~m}, \mathrm{BC}=8 \mathrm{~m}$, and $\angle \mathrm{B}=24^{\circ}$. Find the length of AC
(c) In $\triangle \mathrm{ABC}$, given that $\mathrm{AC}=10 \mathrm{~cm}, \mathrm{BC}=9 \mathrm{~cm}$, and $\angle \mathrm{C}=48^{\circ}$. Find the length of AB
(d) In $\triangle \mathrm{ABC}$, given that $\angle \mathrm{A}=24^{\circ}, \mathrm{AB}=18.6 \mathrm{~m}$, and $\mathrm{AC}=13.2 \mathrm{~m}$. Find the length of BC
(e) In $\triangle A B C$, given that $A B=9 \mathrm{~m}, \mathrm{AC}=12 \mathrm{~m}$, and $\mathrm{BC}=15 \mathrm{~m}$. Find the measure of $\angle \mathrm{B}$.
(f) In $\triangle \mathrm{ABC}$, given that $\mathrm{AB}=18.4 \mathrm{~m}, \mathrm{BC}=9.6 \mathrm{~m}$, and $\mathrm{AC}=10.8 \mathrm{~m}$. Find the measure of $\angle \mathrm{A}$.

CHALLENGE: A ship leaves port at 1 pm traveling north at the speed of 30 miles/hour. At 3 pm , the ship adjusts its course 20 degrees eastward. How far is the ship from the port at 4 pm ? (round to the nearest unit).
$\begin{array}{ll}30 / 11 & x^{2}=30^{2}+60^{2}-2 \cdot 30 \cdot 60 \cdot \cos 160 \\ 16 \% & \sqrt{x^{2}}=\sqrt{7882.8934} \\ 1 x & x=89 \\ 1 & \therefore \text { The boat is app. } 89 \text { miles awoy }\end{array}$

Solutions:

1. $\quad(\mathrm{a}) \mathrm{a}^{2}=(36)^{2}+(26)^{2}-2(36)(26) \cdot \cos 53^{\circ}$
(b) $(28.4)^{2}=(23.6)^{2}+(33.2)^{2}-2(23.6)(33.2) \cdot \cos \angle \mathrm{B}$
(c) $\mathrm{c}^{2}=(22.4)^{2}+(14.2)^{2}-2(22.4)(14.2) \cdot \cos 75^{\circ}$
2. (a) 29.1 cm (b) 57° (c) 23.2 m
3. (a) 33.1 cm (b) 8.4 m (c) 7.8 cm (d) 8.5 m (e) 53° (f) 24°
