MCR3U1Date:Day 6: The Sine & Cosine LawsChapter 5: Trigonometric Ratios

1) <u>THE SINE LAW</u>

Solving	for side	Solving f	Solving for angle	
а	b	sin A	sinB	
sinA =	sinB	\overline{a}	\overline{b}	

$$c^{2} = a^{2} + b^{2} - 2abcosC$$

$$c^{2} = a^{2} + b^{2} + b^{2} - 2abcosC$$

$$c^{2} = a^{2} + b^{2} + b^{2}$$

The cosine law is used to solve any triangle when given:
SIDE - CONTAINED-ANGLE SIDE - (SAS)

$$C^2 = a^2 + b^2 - 2abcos C$$

 $x^2 = 1(^2 + g^2 - 2 \cdot 11 \cdot g \cdot cos 37)$
 $x^2 = 44 \cdot 4402$
 $x = 6.7$
 $\therefore x$ is a pproximately 6.7 units.
 $Cos C = \frac{a^2 + b^2 - cr}{2.5 \cdot 9}$
 $Cos C = \frac{a^2 + b^2 - g^2}{2.5 \cdot 9}$
 $Cos O = \frac{5^2 + 9^2 - g^2}{12 \cdot 5 \cdot 9}$
 $Cos O = \frac{5^2 + 9^2 - g^2}{12 \cdot 5 \cdot 9}$
 $Cos O = \frac{90}{12 \cdot 9}$ leave as a
 $cos O = \frac{90}{12 \cdot 9}$ fraction for more accuracy
 $cos^2(\frac{42}{9}) = 0$
 $cos^2(\frac{42}{9}) = 0$

MCR3U1 Day 6: The Sine & Cosine Laws

The Sine Law Practice

- 1. Solve for the given variable (correct to 1 decimal place) in each of the following:
- (a) $\frac{a}{\sin 35^\circ} = \frac{10}{\sin 40^\circ}$ (b) $\frac{65}{\sin 75^\circ} = \frac{b}{\sin 48^\circ}$ (c) $\frac{75}{\sin 55^\circ} = \frac{c}{\sin 80^\circ}$
- 2. For each of the following diagrams write the equation you would use to solve for the indicated variable:

- 3. Solve for each of the required variables from Question #2.
- 4. For each of the following triangle descriptions you should make a sketch and then find the indicated side rounded correctly to one decimal place.
- (a) In $\triangle ABC$, given that $\angle A = 57^{\circ}$, $\angle B = 73^{\circ}$, and AB = 24 cm. Find the length of AC
- (b) In $\triangle ABC$, given that $\angle B = 38^\circ$, $\angle C = 56^\circ$, and BC = 63 cm. Find the length of AB
- (c) In $\triangle ABC$, given that $\angle A = 50^\circ$, $\angle B = 50^\circ$, and AC = 27 m. Find the length of AB
- (d) In $\triangle ABC$, given that $\angle A = 23^\circ$, $\angle C = 78^\circ$, and AB = 15 cm. Find the length of BC
- (e) In $\triangle ABC$, given that $\angle A = 55^{\circ}$, $\angle B = 32^{\circ}$, and BC = 77 cm. Find the length of AC
- (f) In $\triangle ABC$, given that $\angle B = 14^\circ$, $\angle C = 78^\circ$, and AC = 36 m. Find the length of BC

Challenge: The angle of elevation to the top C of a building from two points A and B on level ground are 50 degrees and 60 degrees respectively. The distance between points A and B is 30 meters. Points A, B and C are in the same vertical plane. Find the height h of the building (round your answer to the nearest unit).

$$\frac{d}{\sin 50} = \frac{30}{\sin 10} = d = \frac{30 \sin 50}{\sin 10} = \frac{132.31}{\sin 10}$$

Sinbo = $\frac{h}{d} = h = d = \frac{132.34}{\sin 10}$
 $= \frac{132.34}{\sin 10}$
 $h = 114.62$
The height is (15m.

The Cosine Law Practice

1. For each of the following diagrams write the equation you would use to solve for the indicated variable:

- 2. Solve for each of the required variables from Question #1.
- 3. For each of the following triangle descriptions you should make a sketch and then find the indicated value.
- (a) In $\triangle ABC$, given that AB = 24 cm, AC = 34 cm, and $\angle A = 67^{\circ}$. Find the length of BC
- (b) In $\triangle ABC$, given that AB = 15 m, BC = 8 m, and $\angle B = 24^{\circ}$. Find the length of AC
- (c) In $\triangle ABC$, given that AC = 10 cm, BC = 9 cm, and $\angle C = 48^{\circ}$. Find the length of AB
- (d) In $\triangle ABC$, given that $\angle A = 24^{\circ}$, AB = 18.6 m, and AC = 13.2 m. Find the length of BC
- (e) In $\triangle ABC$, given that AB = 9 m, AC = 12 m, and BC = 15 m. Find the measure of $\angle B$.
- (f) In $\triangle ABC$, given that AB = 18.4 m, BC = 9.6 m, and AC = 10.8 m. Find the measure of $\angle A$.

CHALLENGE: A ship leaves port at 1 pm traveling north at the speed of 30 miles/hour. At 3 pm, the ship adjusts its course 20 degrees eastward. How far is the ship from the port at 4pm? (round to the nearest unit)

unit). $X^{2} = 30^{2} + 60^{2} - 2.30.60.cos 60$ $X^{2} = 7882.8934$ $K^{2} = 89$	30×2 = 60 mi	$\frac{1}{1} = 30 \times 1$
The boat is app. 89 miles away	from the port!	— — → E
Solutions: 1. (a) $a^2 = (36)^2 + (26)^2 - 2(36)(26) \cdot \cos 53^\circ$ (b) $(28.4)^2 = (23.6)^2 + (33.2)^2 - 2(23.6)(33.2) \cdot \cos \angle B$ (c) $c^2 = (22.4)^2 + (14.2)^2 - 2(22.4)(14.2) \cdot \cos 75^\circ$ 2. (a) 29.1 cm (b) 57° (c) 23.2 m 3. (a) 33.1 cm (b) 8.4 m (c) 7.8 cm (d) 8.5 m (e) 53° (f) 24°	1 V S	