Ambiguous is defined as "having more than one possible meaning". In trigonometry, ambiguity exists for certain problems using the Sine Law.
HINT: Cut pieces of Cappellinis (thin spaghettis) for hands on experience or use a compass.

1) THE ACUTE CASE: $\operatorname{in} \triangle A B C, \angle A<90^{\circ}$,

CASE 1: When $\angle \mathrm{A}=30^{\circ}, \mathrm{b}=8 \mathrm{~cm}$, how many triangles) can you draw with the missing side that equals to 4 cm ? The length of c (side AB) is unspecified (meaning you can change its length to form the triangle).
\qquad
Number of triangles constructed
Did you notice anything special about this line?
It is perpendicular to $\overline{A B}$
Write an algebraic expression for side a using b and $\sin \mathrm{A}$.
$\sin A=\frac{a}{b} \quad \therefore a=b \sin A \rightarrow$ this calculotes yen the height CONCLUSION:
If $\angle \mathrm{A}$ is acute (between 0 and 90) and , there will be only triangle which is a right triangle. Therefore, no ambiguity exists.

CASE 2: How many triangle (s) can you draw if we set the missing side to 3 cm ?
The length of c (side AB) is unspecified (meaning you can change its length).

Set the compass to 3 cm and draw another semicircle

Number of triangles constructed?
none

Did you notice anything special about this line?
The line is shorter than height (height is the shortest distance)
CONCLUSION:
If $\angle \mathrm{A}$ is acute and " a " is less than the height $(\mathrm{a}<\mathrm{b} \sin \mathrm{A})$, there will be NO - -riongl(2). In other words, you cannot draw a triangle with a side that is shorter thant ne shortest side.

MCR3U1

Date:
Day 6: Sine Law - The Ambiguous Case
Chapter 5: Trigonometric Ratios
CASE 3: How many triangles) can you draw if we set the missing side to 8 cm or 9 cm ?
The length of c (side AB) is unspecified (meaning you can change its length).

If $\angle \hat{A}$ is acute and $\mathbf{a} \geq \mathbf{b}$, there will be only ONE triangle that can be constructed. Therefore, no ambiguity exists.
CASE 4: How many triangle (s) can you draw if we set the missing side to 5 cm then 7 cm ?
The length of c (side AB is unspecified (meaning you can change its length).
Number of triangles constructed when a is between the height and $\mathrm{b}(b \sin A<a<b)$?
-2 \qquad

If $\angle \mathrm{A}$ is acute and $\mathbf{b} \sin \mathbf{A}<\mathbf{a}<\mathbf{b}$, there will be +w triangles that can be constructed.
Therefore, an AMBIGUOUS Case exists.
2) THE OBTUSE CASE: $\operatorname{in} \triangle A B C, \angle A \geq 90^{\circ}$,

Case 5:

How many triangles can you draw when the missing side is 3 cm then 4 cm ? The length of c (side AB) is unspecified.

If A is obtuse 'and the missing side is less than side AC° (a $\leq \mathrm{b}$), there will be $\cap \bigcirc \quad$ triangles.

Case 6:

How many triangles can you draw when the missing side is 5 cm then 6 cm ? The length of c (side AB) is unspecified.

If A is obtuse and the missing side is greater than side AC $(\mathbf{a}>\mathbf{b})$, there will be only one triangle.
Note that there is no ambiguous case if $\quad \mathrm{A} \geq \mathbf{9 0}^{\circ}$

NOTE: We always question if the side opposite to Jiver Page 2 of ${ }^{\text {and }}$ creates a case.

Date:
$\left.\begin{array}{|lll|}\hline \mathrm{A}<90^{\circ} & \begin{array}{l}\mathrm{a}<\mathrm{b} \sin \mathrm{A} \\ \mathrm{a}=\mathrm{b} \sin \mathrm{A}\end{array} & \begin{array}{l}\text { SUMMARY } \\ \text { no triangle } \\ \text { one triangle (right angle) }\end{array} \\ \begin{array}{lll}\mathrm{h} \sin \mathrm{A}<\mathrm{a}<\mathrm{b} & \text { ambiguous case (two triangles) } \\ \mathrm{a} \geq \mathrm{b} \quad: \\ \mathrm{A} \geq 90^{\circ} & \begin{array}{l}\text { one triangle } \\ \mathrm{a} \leq \mathrm{b}\end{array} \\ \text { a } \mathrm{b}\end{array} & \begin{array}{l}\text { no triangle } \\ \text { one triangle }\end{array}\end{array}\right\}$ THE ACUTE CASE

When you are given two sides and an angle not in between those sides, you need to be on the lookout for the ambiguous case.

How to determine if there is a $\mathbf{2}^{\text {nd }}$ valid angle:

1. See if you are given two sides and the angle not in between (SSA). This is the situation that may have 2 possible answers.
2. Find the value of the unknown angle.
3. Once you find the value of your angle, subtract it from 180° to find the possible second angle.
4. Add the new angle to the original angle. If their sum is less than 180°, you have two valid answers. If the sum is over 180°, then the second angle is not valid.
1) In $\triangle \mathrm{QRS}, \angle \mathrm{Q}=105^{\circ}, \mathrm{r}=15, \mathrm{q}=20$. Determine the number of triangles possible. Solve the triangles) if possible. Since this's an obtuse case, side 9 needs to be greater than r. There's one triangle.
$\begin{array}{rl}15 . \frac{\sin \theta}{15}=\frac{\sin 105}{20} .15 & \sin 29 \frac{s}{\sin 29}=\frac{20}{\sin 105} \cdot \sin 29 \\ \sin \theta=0.7244 & s \div 10 \\ \sin ^{-1}(0.7244)=\theta & \\ \frac{\theta \div 46^{\circ}}{} \quad & \therefore \text { Side } s \text { is } 10 \\ \theta=46 \\ \beta=29\end{array}$

2) In $\triangle \mathrm{QRS}, \angle \mathrm{Q}=75^{\circ}, \mathrm{r}=15, \mathrm{q}=14$. Determine the number of triangles possible. Solve the triangle (s) if possible.
3) Acute, possible ambiguous case. Draw ${ }^{14}$ " first. Then ploce letters according to question
4) Then, let's check if the side 9 is long enough to be' the height. If not atriangle cannot be formed.

$$
\begin{aligned}
\text { height } & =15 \cdot \sin 75 \\
h & \doteq 14.5
\end{aligned}
$$

\therefore Since side q is shorter than $Q \longrightarrow R$
\therefore Since side 9 is shorter than the shortest side, o triangle cancel be formed
\qquad
3) In $\triangle \mathrm{ABC}, \angle \mathrm{A}=60^{\circ}, \mathrm{c}=10 \mathrm{~cm}$ and $\mathrm{a}=9 \mathrm{~cm}$. Determine the number of triangles possible. Solve the triangles) if possible.

1) $\angle A$ is acute, possible ambiguous case.
2) Let's check if side a is long enough to be a height

$$
\begin{aligned}
& h=10 \cdot \sin 60 \\
& h \div 8.7 \mathrm{~cm}
\end{aligned}
$$

3) side in question is greater than height but less than side citherefoe it's an ambiguous case.

$$
\text { 10. } \frac{\sin \theta}{10}=\frac{\sin 60}{9} \cdot 10 \quad \sin 46 \cdot \frac{b}{\sin 46}=\frac{9}{\sin 60} \cdot \sin 46
$$

We'retrying to find out if the side opposite to the given angle will create an amblinuour case.

$$
\begin{array}{rr}
\begin{aligned}
& \sin \theta=0.9623 \\
& \sin ^{-1}(0.9623)=\theta \\
& \theta=7.5 \\
& \theta \text { is } 7.5 \mathrm{~cm} . \\
& \alpha=180-60-74 \\
& \alpha \text { is } 74^{\circ} \\
& \alpha \text { is } 46^{\circ}
\end{aligned}
\end{array}
$$

