Determining the Equation of an Exponential Function

- 1. Choose 2 points from the transformed graph
- 2. Determine c from the y-value of the horizontal asymptote
- 3. Subtract c from the y-values of the chosen points (to translate back to the x-axis)
- 4. Substitute the (x,y) pairs into $y = ab^x$ to create two equations.
- Rearrange and solve the system using substitution.
 State the answer in the form y = ±ab^x + c.

Ex1. Determine an equation for each of the following graphs in the form of $y = ab^x + c$

Ex2. Find the exponential function through (2, 16) and (6, 256) that has a horizontal asymptote at y = 0.

Ex3. Find the exponential function through (2, 10) and (4, 22) that has a horizontal asymptote at y = 4.

Ex4. Find an exponential function that passes through (3, 12.5) and (4, 11.25) and has a horizontal asymptote of

$$y = 10.$$

$$Step 1: y = ab^{x} + 10$$

$$12.5 = ab^{3} + 10$$

$$2.5 = ab^{3}$$

$$y = 20(0.5)^{x} + 10$$

$$y = 20(0.5)^{x} + 10$$

$$y = 20(0.5)^{x} + 10$$

$$y = 20(\frac{1}{2})^{x} + 10$$

Date:_____ **Chapter 4: Exponential Functions**

Ex5. The graph of $f(x) = 2^x$ is compressed vertically by a factor of $\frac{1}{2}$ reflected in the y-axis, and translated right 4 units and downward 5 units.

a) Write the equation of the new function.

$$a = \frac{1}{2} \quad k = -1 \quad d = 4 \quad c = 4$$

b) State the domain, range, y-intercept and equation of the horizontal asymptote.

Ex6. The equation of the function that represents $f(x) = (\frac{1}{4})^x$ after it is compressed horizontally by a factor of $\frac{1}{2}$, reflected in the x-axis, and shifted 4 to the left and 6 units up.

a) Write the equation of the new function.

b) State the domain, range, and equation of the horizontal asymptote.

$$D = \{x \in \mathbb{P}\}$$

$$Sub "d' for "x"
$$Y = - \begin{bmatrix} \frac{1}{4} & 2(0+4) \\ \frac{1}{4} & -\frac{1}{4} \end{bmatrix} + 6$$

$$y = 6$$

$$= - \left(\frac{1}{4}\right)^8 + 6$$

$$= 5.9985$$

$$(0, 5,9985)$$$$