\qquad

Determining the Equation of an Exponential Function

1. Choose 2 points from the transformed graph
2. Determine c from the y-value of the horizontal asymptote
3. Subtract c from the y-values of the chosen points (to translate back to the x-axis)
4. Substitute the (x, y) pairs into $y=a b^{x}$ to create two equations.
5. Rearrange and solve the system using substitution.
6. State the answer in the form $y= \pm a b^{x}+c$.

Ex1. Determine an equation for each of the following graphs in the form of $y=a b^{x}+c$
a)

$C=0$
(1) Using $A(1,3)$

$$
\begin{aligned}
y & =a b^{x}+c \\
3 & =a b
\end{aligned}
$$

(2)

$$
\begin{aligned}
& y=a b^{x} \quad B(2,9) \\
& 9=a b^{2}
\end{aligned}
$$

(3) Divide (2) by (1)

$$
\begin{gathered}
\frac{9}{3}=\frac{a b^{2}}{a b} \\
3=b
\end{gathered}
$$

(4) sub "3" for " b "

$$
\begin{aligned}
& 3=a(3) \\
& 1=9 \\
& \therefore y=3^{x}
\end{aligned}
$$

$$
c=0
$$

(1) $A(-2,9)$
$9=a b^{-2}$
(2) $B(-1,3)$

$$
3=a b^{-1}
$$

(3) divide (2) by (1)
$1 \frac{3}{9}=\frac{\pi b^{-1}}{\circledast b^{-2}}$
$1, \frac{1}{3}=b$
(4) sub" $y_{3}^{\prime \prime}$ for " b '

$$
\begin{aligned}
& 3=a\left(\frac{1}{3}\right)^{-1} \\
& 3=a(3) \\
& a=1
\end{aligned}
$$

$\therefore y=\left(\frac{1}{3}\right)^{x}$
c)

$$
c=-2
$$

$$
\begin{aligned}
& \text { (1) } y=a b^{x}-2 \quad A(-1,7) \\
& 7=a b^{-1}-2 \\
& 9=a b^{-1}
\end{aligned}
$$

(2)

$$
\begin{aligned}
& y=a b^{x}-2 \quad B(-2,1) \\
& 1=a b^{-2}-2 \\
& 3=a b^{-2}
\end{aligned}
$$

(3) divide

$$
\frac{3}{9}=\frac{a b^{-2}}{a b^{-1}}
$$

if $\frac{1}{3}=b^{-1}$

$$
\begin{aligned}
& 3=b \\
& \therefore 9=a\left(\frac{1}{3}\right)
\end{aligned}
$$

$$
a=27
$$

$$
\therefore y=27(3)^{x}-2
$$

\qquad

Ex2. Find the exponential function through $(2,16)$ and $(6,256)$ that has a horizontal asymptote at $y=0$.

(4)

$$
\begin{aligned}
16 & =a(2)^{2} \\
16 & =49 \\
a & =4
\end{aligned}
$$

$$
\therefore y=4(2)^{x}
$$

Ex. Find the exponential function through $(2,10)$ and $(4,22)$ that has a horizontal asymptote at $y=4$.

$$
y=a b^{x}+4
$$

(1) $10=a b^{2}+4$

$$
6=a b^{2}
$$

(2) $22=a b^{4}+4$

$$
18=a b^{4}
$$

(3)
(4)

$$
\begin{aligned}
& \frac{18}{6}=\frac{a b^{4}}{a b^{2}} \\
& \sqrt{3}=\sqrt{b^{2}} \\
& \sqrt{3}=b
\end{aligned}
$$

$$
\begin{aligned}
& 6=a(\sqrt{3})^{2} \\
& 6=3 a \\
& a=2
\end{aligned}
$$

$$
\begin{aligned}
\therefore y & =2(\sqrt{3})^{x}+4 \\
& =2\left(3^{\frac{1}{2}}\right)^{x}+4 \\
& =2(3)^{\frac{1}{2} x}+4
\end{aligned}
$$

Ex4. Find an exponential function that passes through $(3,12.5)$ and $(4,11.25)$ and has a horizontal asymptote of $\mathrm{y}=10$.
Step 1: $y=a b^{x}+10$

$$
\begin{aligned}
12.5 & =a b^{3}+10 \\
2.5 & =a b^{3}
\end{aligned}
$$

Step 2: $11.25=a b^{4}+10$

$$
1.25=a b^{4}
$$

$$
\begin{array}{rl}
\frac{5+\mathrm{p}^{3}}{\frac{1.25}{2.5}=\frac{a b^{4}}{a b^{3}}} & \therefore y=20(0.5)^{x}+10 \\
0.5=b & y=20\left(\frac{1}{2}\right)^{x}+10
\end{array}
$$

Step: $2.5=a(0.5)^{3}$

$$
\begin{aligned}
2.5 & =a(0.125) \\
20 & =9
\end{aligned}
$$

Ex. The graph of $f(x)=2^{x}$ is compressed vertically by a factor of $\frac{1}{2}$ reflected in the y-axis, and translated right 4 units and downward 5 units.
a) Write the equation of the new function.

$$
\begin{gathered}
a=1 / 2 \quad k=-1 \quad d=4 \quad c=5 \\
y=\frac{1}{2}\left[2^{-(x-4)}\right]-5
\end{gathered}
$$

b) State the domain, range, y-intercept and equation of the horizontal asymptote.

$$
\begin{aligned}
& \rightarrow D=\{x \in R\} \\
& \rightarrow R=\{y \in R \mid y>-5\} \\
& \rightarrow y=-5 \\
& \rightarrow \text { sub "0" for } x \rightarrow \begin{aligned}
y & =\frac{1}{2}\left(2^{-(0-4)}\right)-5 \\
& =0.5\left(2^{4}\right)-5 \\
& =8-5
\end{aligned}
\end{aligned}
$$

Ex6. The equation of the function that represents $\overline{f(x)}=\left(\frac{1}{4}\right)^{x}$ after it is compressed horizontally by a factor of $\frac{1}{2}$, reflected in the x-axis, and shifted 4 to the left and 6 units up.
a) Write the equation of the new function.

$$
f(x)=-\left[\frac{1}{4}^{2(x+4)}\right]+6
$$

b) State the domain, range, and equation of the horizontal asymptote.

$$
\begin{aligned}
& \vec{D}=\{x \in R\} \\
& R=\{y \in R \mid y<b\} \\
& y=6
\end{aligned}
$$

$$
\begin{aligned}
& \text { Sub "0" for "x" } \\
& y=-\left[\frac{1}{4}^{2(0+4)}\right]+6 \\
&=-\left(\frac{1}{4}\right)^{8}+6 \\
& \div 5.9985
\end{aligned}
$$

