8.1: Simple and Compound Interest

Chapter 8: Financial Mathematics

MCR3U1

Simple Interest

Simple Interest (I) - interest calculated only on the original principal using the formula:
I = Pr where:
I is the interest in dollars
\mathbf{P} is the principal in dollars
r is the annual rate of interest, as a decimal
t is the time, in years

Principal (P) - amount of money initially invested or borrowed

Amount (A) - the value of an investment or loan at the end of a time period - can be calculated using the formula $\mathbf{A}=\mathbf{P}(\mathbf{1}+\mathbf{r t})$ or $\mathbf{A}=\mathbf{P}+\mathbf{P r t}$

Example 1: Complete the following chart for an investment of $\$ 1000$ at a rate of 5% p.a. (per annum) for 5 years.

\# of years	Original Amt.	Interest Rate	Simple Interest (\$)	Amount(\$)
$\mathbf{1}$	1000	0.05	50	1050
$\mathbf{2}$	1000	0.05	50	1100
$\mathbf{3}$	1000	0.05	50	1150
$\mathbf{4}$	1000	0.05	50	1200
$\mathbf{5}$	1000	0.05	50	1250

After each year, the Amount increases by $\$ 50$. Since this is a constant amount, this is an example of an arithmetic sequence.

Example 2: Determine the interest on $\$ 715$ at an annual rate of 6.2% for 10 months.
$I=$?
$I=P r t$

$$
\begin{aligned}
& =715(6.2 \div 100) \frac{10}{12} \quad \therefore \text { Interest earned in } 10 \text { month, } \\
& =715 \times(0.062) \times \frac{10}{12} \\
& =36.94
\end{aligned}
$$

$\begin{aligned} P & =715 \\ x & =6.2 \% / a= \\ r_{t} & =\frac{10}{12} \text { months }\end{aligned}$
$\begin{aligned} P & =715 \\ x & =6.2 \% / a= \\ r_{t} & =\frac{10}{12} \text { months }\end{aligned}$
$\begin{aligned} P & =715 \\ x & =6.2 \% / a= \\ t & =\frac{10}{12} \text { months }\end{aligned}$
Example 3: How many days will $\$ 800$ have to be invested at 7% annually to earn $\$ 13.50$?
$I=13.50$
$P=800$
$r=7 \% / a=7 \div 100=0.07 / a$
$\begin{aligned} \frac{I}{P r} & =\frac{P_{r} t}{P r} \\ t & =\frac{I}{P r}\end{aligned}$
$t=$?
$t=\frac{13.50}{800 \times(0.07)}$
rearrange the formula
$\left\{\begin{aligned} & t=\frac{13.50}{56} \\ & t \div 0.24 \text { years } \\ & 0.24 \times 365 \doteq 88\end{aligned}\right.$ \therefore I- 'll take about 88 cays.
Pg. 481 \#3, 4, Face, 7, 10, 11

