8.2 \& 8.3: Compound Interest: Present and Future Value

Chapter 8: Financial Mathematics

Compound Interest

- Compound interest is interest which is added to the origin_(principal.
- You are getting interest on top of interest when you invest into all account that offers compound interest.
- The investment can be compounded by the following periods:Semi-annually - 2
Quarterly - 4
Bi-weekly- 26Semi-monthly- 24
Annually - 1
Weekly- 52
Developing the Compound Interest Formula
Example 1: You invest $\$ 2000$ in an account that earns 7.5% interest per year compounded annually for 5 years. P

Compound Interest Formula
You can calculate compound interest by using the formula $A=P(1+i)^{n}$ where.
Type $=\ldots . .-$
$A=$ Total amount of investment (or future value) $\rightarrow \overline{F V}=P V(1+i)^{n}, ~$
$P=$ Principal (or present value) $\rightarrow P V=F V(1+i)^{n}$
$\mathrm{i}=$ Interest rate as a decimal, per compounding period

- $\mathbf{i}=\mathbf{r} \div \mathbf{N}$ where r is the interest rate per annum
\mathbf{N} is the number of compounding periods per annum
$\mathrm{n}=$ Total number of compounding periods
- $\mathbf{n}=\mathbf{y N}$ where \mathbf{y} - number of years

$$
\left\{\begin{array}{l}
\frac{F V}{(1+i)^{n}}=\frac{P V(1+i)^{n}}{(1+i)^{n}} \\
\frac{F V}{(1+i)^{n}}=P V
\end{array}\right.
$$

$$
P V=\frac{F V}{(1+i)^{n}} \text { OR } P V=F V(1+i)^{-n}
$$

- Example 2: Calculate the interest rate (i not R) for an 8\%/a investment compounded:
a) semi-annually

$$
\begin{aligned}
i & =\frac{0.08}{2} \\
& =0.04
\end{aligned}
$$

b) weekly
c) monthly

$$
i=\frac{0.08}{52}
$$

$$
\frac{0.08}{12}
$$

Example 3: Calculate the number of compounding periods in the following investments:
a) Compounded quarterly for 5 years.

$$
4 \times 5=20
$$

b) Compounded semi-annually for 18 months 3

c) Compounded bi-weekly for 2 years 1 year $=4$ comp \cdot period

$$
26 \times 2=52
$$

Example 4: Calculate the amount of an investment if $\$ 500$ is invested at 3% interest compounded quarterly
for 3 years. Type: comp quarterly (4)

$$
\begin{aligned}
A & =P(1+i)^{n} \\
& =500(1+0.03 \div 4)^{12} \\
& =546.90
\end{aligned}
$$

$$
\therefore 3 \% / a=0.03 / a=0.03 \div \underline{\underline{4}}
$$

$$
n: 3 \text { years } x \underline{4}=12
$$

\therefore The amount will be $\$ 546.90$

Example 5: What is the amount of an investment if $\$ 650$ is invested at 2.45% interest compounded monthly for 3 years?

$$
\begin{aligned}
& \text { Type }=\text { compounded monthly } \\
& A=? \\
& P
\end{aligned}=\begin{aligned}
1 & =650 \\
i & =0.0245 / a \div 12 \\
n & =3 \text { years } \times 12=36
\end{aligned}
$$

$$
\begin{aligned}
F V & =P V(1+i)^{n} \\
& =650(1+0.0245 \div 12)^{36} \\
& =699.52
\end{aligned}
$$

\therefore The amount will be $\$ 699.52$

Example 6:
Natalie invests $\$ 18000$ at 8\%/a, compounded semiannually.
(a) Determine the value of the investment after four years.
(b) Find the interest at this time.

$$
\begin{aligned}
& T=\text { Semi } a_{n n u a l}(2) \\
& A=?
\end{aligned}
$$

$$
p=18000
$$

$$
j=0.08 / 2
$$

$$
n=2 \times 4
$$

Example 7:

$$
\text { a) } \begin{aligned}
A & =P(1+i)^{n} \\
& =18000(1+0.08 / 2)^{8} \\
& =24634.24 \\
& \therefore \text { amount is } \$ 824634.24
\end{aligned}
$$

b) $24634.24-18000$
$=6634.24$

$$
\therefore \text { interest is } 6634.24
$$

Determine the present value of an investment that will be worth $\$ 5000$ in ten years. The interest rate is $4.8 \% / \mathrm{a}$, compounded quarterly.

$$
\begin{aligned}
& T_{\text {le }}=\text { comp } q u \\
& A=5000 \\
& P=? \\
& i=0.048 \div 4 \\
& n=10 \times 4=40
\end{aligned}
$$

$$
\begin{aligned}
P & =A(1+i)^{-n} \\
& =6000(1+0.048 \div 4)^{-40} \\
& =3102.77
\end{aligned}
$$

\therefore The present value is $\$ 3102.77$
by:Alessia Spano
Pg. 490 \#4ace, 5, 6, 9-11 (compound interest future value)
Pg. 498 \#3ac, 5, 6, 8, 9 (compound interest present value)

