Date:

Day 9: Unit Review
Chapter 6: Sinusoidal Functions

Unit 6 Review Trigonometric Functions

1. Sketch the graph of a sinusoidal function that has a period of 180 , an amplitude of 3 , and whose equation of the axis is

2. Sketch 2 cycles of the graph of a sinusoidal function that has a period of 90 , an amplitude of 2 , and whose equation of the axis is $\mathrm{y}=1$.

$$
\begin{aligned}
& (x, y) \rightarrow(2 x, y+2) \\
& (0,0) \rightarrow(0,2)
\end{aligned}
$$

 $(90,1) \rightarrow(180,3)$

$$
(180,0) \rightarrow(360,2)
$$

$$
(270,-1) \rightarrow(540,1)
$$

$$
(360,0) \rightarrow(720,2)
$$

b) Complete the table for the function $\mathrm{m}(\mathrm{x})$.

Period	Amplitude	Equation of the Axis	Domain of 1 Cycle	Range
$7 \imath 0$	1	$y=2$	$\{x \in R \mid 0 \leqslant x \leqslant 720\}$	$\{y \in R \mid 1 \leqslant y \leqslant 3\}$

MCR3U1
Day 9: Unit Review
4. For the function $f(x)=3 \sin (x+30)$:
a) Sketch one cycle of $f(x)$

b) Complete the table for the function $f(x)$.

Period	Amplitude	Phase Shift	Domain of 1 Cycle	Range
360	3	30° left	$\left\{\left.x \in R\right\|^{-30}<x \leqslant 330\right\}$	$\left\{0^{C R} \mid-3 \leqslant y \leqslant 3\right\}$

5. For the function $\mathrm{g}(x)=-3 \cos (x-60)$:
a) Sketch one cycle of $g(x)$

$$
(0,1) \rightarrow(60,-3)
$$

$$
(90,0) \rightarrow(150,0)
$$

$$
(180,-1) \rightarrow(240,3)
$$

$$
(270,0) \rightarrow(330,0)
$$

$$
(360,1) \rightarrow(420,-3)
$$

$$
(x, y) \rightarrow(x+60,-3 y)
$$

b) Complete the table for the function $g(x)$.

Period	Amplitude	Phase Shift	Domain of 1 Cycle	Range
360	3	60° right	$\{x \in R \mid-60 \leqslant x \leqslant 420\}$	$\{y \in R \mid-3 \leqslant y \leqslant 3\}$

6. Fill in the blanks: When $\mathrm{y}=\sin \mathrm{x}$ transforms to $\mathrm{y}=2 \sin \mathrm{x}$, the y coordinate changes, while the \mathbf{x} coordinate does not change.

Date:

7. A Ferris wheel has a diameter of 30 metres, and the loading platform is 2 metres above the ground. The Ferris wheel completes one revolution every 180 seconds. Create a sinusoidal equation modeling the height, $h(t)$, of the rider above the ground, in metres, as a function of time, t, measured in seconds.

$$
\begin{aligned}
& y=a \sin [k(x-d)]+c \\
& y=15 \sin [2(x-45)]+17
\end{aligned}
$$

17
32
17
mo man

$$
O R
$$

$$
y=15 \cos [2(x-90)]+17
$$

2

8. A snail is riding a water wheel as it turns counter clockwise, and her height above the water is given by the equation $h(t)=4 \cos (2 t)$, where $h(t)$ is in metres, and t is the time, in seconds.
a) Graph the snail's height above the water as a function of time

b) What is the minimum height of the snail? What does this represent? $y=-4 \mathrm{~m}$. It's under water, 4 m in depth.
c) Calculate the time required for one revolution of the water wheel.

180 sec .
9. At low tide, the water is 4 metres deep. At high tide, the water is 10 metres deep. Each cycle takes 16 hours. Assume the cycle starts at low tide.
a) Create a sinusoidal equation modeling the depth of the water, $d(t)$, in metres, as a function of the time elapsed since low tide, t, in hours.
$d(t)=3 \sin [22.5(t-4)]+7$
$d(t)=3 \cos [22.5(t-8)]+7$
$k=\frac{360}{16}=22.5$

b) Use the equation to calculate the depth of the water 42 hours after low tide.

$$
\begin{aligned}
d(42) & =3 \sin [22.5(42-4)]+7 \\
& =3 \sin [855]+7 \\
& =9.1
\end{aligned}
$$

\therefore It'll be approximately 9.1 m .

Date:
Day 9: Unit Review
Chapter 6: Sinusoidal Functions
10. State two possible sinusoidal equations of the function graphed on the grid below (1 sine, 1 cosine).

$$
a=1, \quad c=2, \quad d=O(\sin), k=1
$$

$$
\begin{aligned}
& y=\sin x+2 \\
& y=\cos (x-90)+2
\end{aligned}
$$

$$
\begin{aligned}
& y=3 \sin \theta \\
& 02 \\
& y=3 \cos (\theta-90)
\end{aligned}
$$

$$
\begin{aligned}
& y=\sin (\theta-30) \\
& y=\cos (\theta-120)
\end{aligned}
$$

11. State the transformations (in order) that would be applied to the graph of $f(x)=\sin x$ to obtain the graph of $\mathrm{g}(\mathrm{x})=3 \sin [2(\mathrm{x}-45)]$.
$-R \Rightarrow$ none \quad vertically stretched by a factor oof 3 and horizontally compressed

- \rightarrow by e foetor of $1 / 2$
- $T \rightarrow$ Shifted 45° right

12. State the transformations (in order) that would be applied to the graph of $f(x)=\cos x$ to obtain the graph of $h(x)=\sin (2 x-180)+3$
R-none

$$
\begin{aligned}
=\sin [2(x-90)]+3 \quad & 5 \text {-horizontally compressed by a foetor o } \\
& T \text {-shifted } 90^{\circ} \text { right and } 3 \text { units up. }
\end{aligned}
$$

