Unit 1 Test VERSION B Functions and Transformations

K	T	C	A
/18	/8	/10	/19

PART 1 - KNOWLEDGE: [18 MARKS]

1. Determine whether each of the following are functions and then state the domain and range for the

$$y = (x-3)^2 - 1$$
 [3 marks]

$$D = \frac{\{x \in \mathbb{R}\}}{2}$$

Is this a function?
$$\underline{\qquad}$$

$$D = \underbrace{\begin{cases} x \in \mathbb{R}^3 \\ x \in \mathbb{R} \end{cases}}$$

$$R = \underbrace{\begin{cases} y \in \mathbb{R} \\ y = 1 \end{cases}}$$

Is this a function? NO

$$D = \left\{ \begin{array}{c|c} x \in \mathbb{R} & x > -2 \end{array} \right\}$$

$$R = \frac{\{y \in P\}}{}$$

2. Given $f(x) = \frac{1}{x-2} + 4$ find: [3 marks]

a)
$$f(x^2) = \frac{1}{x^2 - 2}$$

b)
$$f(3) = \frac{1}{3-2} + 4$$

3. Consider the relation $f(x) = 3x^2 - 6$. Find $f^{-1}(x)$. Be sure to use proper notation. [3 marks]

$$y = 3x^{2} - 6$$

$$x = 3y^{2} - 6$$

$$\frac{x + 6}{3} = \frac{3y^{2}}{3}$$

$$(\frac{1}{3}(x + 6) = (y^{2})$$

$$y = +\sqrt{\frac{1}{3}(x+6)} \quad \text{or} \quad y = -\sqrt{\frac{1}{3}(x+6)}$$

$$f'(x) = \sqrt{\frac{1}{3}(x+6)} \quad f''(x) = -\sqrt{\frac{1}{3}(x+6)}$$

$$f(x) = \sqrt{\frac{1}{3}(x+b)}$$

or
$$y = -\sqrt{\frac{1}{3}}(x+b)$$

$$\int_{0}^{\infty} f(x) = -\sqrt{\frac{1}{3}(x+6)}$$

4. Graph the function $f(x) = 2(x+6)^2 - 2$ and its inverse. [6 marks]

$$(x,y) \rightarrow (-x-6, 2y-2)$$

$$A(-2,4) \rightarrow A(-8,6) \rightarrow A''(6,-8)$$

$$C(0,0) \rightarrow C^{1}(-6,-2) \rightarrow C^{1}(-2,-6)$$

PART 2 - APPLICATION: [19 MARKS]

Select the appropriate description of how the graph of each function is derived from the graph of $y = x^2$. Place the number next to the correct answer. [6 marks]

a)
$$y = [\frac{1}{3}(x)]^2$$

(5)

(7)

- vertical compression by a factor of $\frac{1}{3}$
- (2) vertical stretch by a factor of 3
- $y = (3x)^2$ b)
- horizontal translation 3 units right (3)
- $y = x^2 3$ c)
- (4) horizontal translation 3 units left

vertical translation 3 units up

- (6) vertical translation 3 units down
- $y = (x 3)^2$ d)
- reflection in x-axis and horizontal translation 3 units left
- $y = -(x+3)^2$ e)

f)

- (8) horizontal stretch by a factor of 3
- horizontal compression by a factor of $\frac{1}{3}$ (9)
- (10)horizontal translation 3 units right and vertical translation 3 units up
- $y = -x^2 + 3 \qquad \boxed{ 1$ (11)reflection in x-axis and vertical translation 3 units up

2. Given the function $f(x) = \sqrt{x}$, sketch the parent function and $y = \sqrt{-\frac{1}{2}(x-6)} - 4$ without a table of values. [5 marks]

$$\begin{array}{ccc} (x,y) & \longrightarrow & (-2x+6,y-4) \\ A(0,0) & \longrightarrow & A'(6,-4) \\ B(1,1) & \longrightarrow & B'(4,-3) \\ C(4,2) & \longrightarrow & C'(-2,-2) \\ D(9,3) & \longrightarrow & D'(-12,-1) \end{array}$$

3. Given f(x) shown below, graph g(x) = -2f(x+3) + 1. [4 marks]

$$(x,y) \longrightarrow (x-3,^{-2}y+1)$$

$$A(0,0) \longrightarrow A'(-3,1)$$

$$B(3,4) \longrightarrow B'(0,^{-7})$$

$$C(8,4) \longrightarrow C'(5,^{-7})$$

$$D(10,2) \longrightarrow D'(7,^{-3})$$

4. Given $f(x) = -2x^2 + 3x - 5$ and g(x) = 7x - 9 find f(-4) - g(-2). [4 marks]

$$f(-4)$$

$$f(-4) = -2(-4)^{2} + 3(-4) - 5$$

$$= -2(16) - 12 - 5$$

$$= -32 - 17$$

$$f(-4)$$

$$f(-4)$$

$$f(-4) = -2(-4)^{2} + 3(-4) - 5$$

$$= -2(16) - 12 - 5$$

$$= -32 - 17$$

$$= -49$$

$$= -2 h$$

PART 3 - THINKING: [8 MARKS]

Answer ONLY 2 out of 3 questions. Put an X through the questions you don't want marked.

1. If $f'(x) = -\sqrt{2x+4}$, find the equation of f(x) and its domain and range. [4 marks]

If
$$f'(x) = -\sqrt{2x + 4}$$
, find the equation of $f(x)$ and its domain and $y = -\sqrt{2x + 4}$

$$y = -\sqrt{2x + 4}$$

$$y = \frac{1}{2}x^{2} - 2$$
 $D = \{x \in \mathbb{Z}\}$
 $P = \{y \in \mathbb{Z} \mid y > -2\}$

2. a) Write a reciprocal function that would have this domain and range. [4 marks]

D:{
$$x \in \mathbb{R}$$
, $x \neq 4$ }
R:{ $y \in \mathbb{R}$, $y \neq 1$ }

$$f(x) = \frac{1}{x-4} + 1$$

b) Draw an example of a function with this domain and range

3. If g(x) = 3x - 7 and $h(x) = x^2$, find h(g(2)). [4 marks]

3. If
$$g(x) = 3x - 7$$
 and $h(x) = x^2$, find $h(g(2))$. [4 marks]
Steple $g(2) = 3(2) - 7$ Steple $h(-1) = (-1)^2$
 $= 6 - 7$ $= (1)$
 $= -1$

PART 4: COMMUNICATION (10 MARKS)

1. Express the following expression in words: $D: \{x \in R \mid x \ge -4\}$ [2 marks]

X is an element of Real numbers such that x is greater than or equal to -4.

2. Is every relation a function? Explain why or why not...[2 marks]

3. State the transformations, <u>in order</u>, that must be applied to the graph of y = f(x) to obtain the following equation. $y = -4f\left(\frac{1}{3}x\right) + 1$ [4 marks]

4. Form Mark (you will be assigned a mark out of 4 for your mathematical form used throughout the quiz). [2]

1.1 of the train (you will be assigned a mark out of 1 for your mathematical form ased throughout the quiz).						
	Level Four	Level Three	Level Two	Level One		
Expression and	Expresses and organizes	Expresses and organizes	Expresses and	Expresses and		
organization of	mathematical thinking with	mathematical thinking with	organizes	organizes mathematical		
ideas and	a high degree of	considerable effectiveness	mathematical thinking	thinking with limited		
mathematical	effectiveness		with some	effectiveness		
thinking			effectiveness			
Use of conventions,	Uses conventions,	Uses conventions,	Uses conventions,	Uses conventions,		
vocabulary, and	vocabulary and terminology	vocabulary and terminology	vocabulary and	vocabulary and		
terminology	with a high degree of	with considerable	terminology with	terminology with		
	effectiveness	effectiveness	some effectiveness	limited effectiveness		