Trigonometry Review

1. Find the value of side x, rounded to the nearest tenth

$$
\begin{aligned}
15^{2} & =x^{2}+13^{2} \\
225 & =x^{2}+169 \\
225-169 & =x^{2} \\
\sqrt{56} & =x^{2} \\
x & =7.5
\end{aligned}
$$

2. Find the value of angle θ and side x, rounded to the nearest tenth

$$
\begin{aligned}
& \text { Sort } \begin{aligned}
\sin 29 & =\frac{7}{x} \\
x & =\frac{7}{\sin 29}
\end{aligned} \\
&
\end{aligned}
$$

$$
x=14.4 \mathrm{~cm}
$$

3. Find the value of angle θ rounded to the nearest degree .

$$
\cos \theta=\left(\frac{9}{13}\right)
$$

4. Find the value of side x, rounded to the nearest tenth

MBF3C: Mathematics of Personal Finance
Day 7: Unit Review

Date: \qquad
inverse
5. Find the value of angle θ rounded to the nearest degree

sine low

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{C}
$$

$\int \sin ^{-1}\left(\frac{\sin 51}{9} \cdot 11\right)=\theta$
6. Find the length of side x rounded to the nearest tenth

7. Find the length of side x rounded to the nearest tenth

find $x^{2}=3^{2}+5^{2}-2 \cdot 3 \cdot 5 \cdot \cos 42$

$$
\begin{aligned}
\sqrt{x^{2}} & =\sqrt{11.7057} \\
x & =3.4
\end{aligned}
$$

(2)
8. SOLVE the triangle $\triangle A B C$

$$
\begin{aligned}
& \cos \theta=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
& \cos \theta=\frac{7^{2}+6^{2}-4^{2}}{2.7 .6} \\
& \cos \theta=\frac{69}{84} \\
& \cos ^{-1}\left(\frac{69}{84}\right)=\theta \\
& \theta=34.8
\end{aligned}
$$

(3)

$$
\frac{\beta=180-34.8-87.1}{\beta=58.1}
$$

Page 2 of 4
9. Find the length of side c in $\triangle A B C$, where $\angle A=45^{\circ}, \angle C=75^{\circ}$, and $a=12 \mathrm{~cm}$.

10. Find the length of side c in $\triangle A B C$, where $a=8 \mathrm{~cm}, b=10 \mathrm{~cm}$, and $\angle C=20^{\circ}$.

$$
\begin{aligned}
& c^{2}=8^{2}+10^{2}-2 \cdot 8 \cdot 10 \cdot \cos 20 \\
& c^{2}=\sqrt{13.6492} \\
& c=3.7 \mathrm{~cm}
\end{aligned}
$$

11. Find the measure of $\angle B$ in $\triangle A B C$, where $a=8 \mathrm{~cm}, b=10 \mathrm{~cm}$ and $c=19 \mathrm{~cm}$.

$$
\begin{aligned}
& 3 \text { in } \triangle A B C \text {, where } a=8 \mathrm{~cm}, b=10 \mathrm{~cm} \text { and } \mathrm{c}=1 \mathrm{qcm} . \\
& \cos \theta=\frac{10^{2}+8^{2}-10^{2}}{2 \cdot 10 \cdot 8} \\
& \cos \theta=\frac{64}{160} \\
& \cos ^{-1}(64 / 160)=66.4^{\circ}
\end{aligned}
$$

12. A golfer hit her tee shot so that it landed 5 yd behind a 30 ft tall tree. She decided to take her second shot and hoped the ball would make it over the top of the tree. She used her lob wedge and hit the ball, sending it upward at an angle of 60°. Was she able to clear the top of the tree? Hint: there are $\mathbf{3} \mathbf{f t} \mathbf{~ i n ~} \mathbf{1} \mathbf{~ d d}$

0

30 ft

\therefore She wort clear the top of the tree becour the min orle most be 63.4. Sk e sends the bell with 60°.
13. A lighthouse is 15 m tall. A sailor, in his sailboat, looks up to the top of the lighthouse at angle of elevation of 15°. How far is the sailor from the base of the light house?

\therefore The sails is 56 m firm the $d=\frac{15}{\text { tana ls }}$ book of the yo at have.

$$
d \equiv 56 \mathrm{~m}
$$

14. To measure the distance across a river, a surveyor took measurements and drew the diagram shown.

Determine the distance from X to Y.

$$
\begin{gathered}
-40-78=62 \\
x
\end{gathered}
$$

$$
\begin{gathered}
\angle \sin 40 \cdot \frac{z}{\sin 40^{\circ}}=\frac{450}{\sin 62} \cdot \sin 40 \\
\left(\frac{z=327.60 \mathrm{~m}}{z}\right.
\end{gathered}
$$

\therefore The distance between x and y is 327.60 m
15. The posts of a hockey goal are 2.0 m apart. Adam is 4.2 m from one post and 5.6 m from the other post. Within what angle must he shoot the puck to score the goal?

