\qquad

1. Multiple choice (circle the correct answer):

- The relation that is also a function is:
a) $x^{2}+y^{2}=25$ circle
© $f(x)=x^{2}$
parabola
c) $\sqrt{y^{2}}=\sqrt{x}$

$$
y=\mp \sqrt{x}
$$

d) $g(x)= \pm \sqrt{x}$

$$
\begin{aligned}
f(-1) & =(-1)^{2}-(-1)+3^{0} \\
& =1+1+3 \\
& =5
\end{aligned}
$$

a) $f(-1)=-5$
b) $f(-1)=1$
c) $f(-1)=-1$

6 Q $f(-1)=5$

- The range that best corresponds to $f(x)=\frac{1}{x+3}$ is: $f(x)=\frac{1}{x+3}+0 \rightarrow$ range
a) $\{y \in \mathfrak{R}, y \neq 3\}$
b) $\{y \in \mathfrak{R}\}$
c) $\{y \in \mathfrak{R}, y \neq-3\}$ C $\{y \in \mathfrak{R}, y \neq 0\}$
$x=\frac{y}{2}-8$
\xrightarrow{y}
- If $f(x)=\frac{1}{2} x-8$, then the proper equation of its inverse is:
$x+8=\frac{y}{2}$
a) $y=-\frac{1}{2} x+8$
b) $x=\frac{1}{2} y-8$
(C) $f^{-1}(x)=2(x+8)$
d) $f^{-1}(x)=2 x+8$
$y=2(x+8)$
$f^{\prime}(x)=2(x+8)$.
For the graph of $f(x)=\sqrt{x}$, identify the transformation that would $\underline{\text { not }}$ be applied to $f(x)$ to
obtain the graph of $y=2 f(-2 x)+3$:

horizontal

a) Vertical stretch by a factor of 2
(a) Vertical reflection
d) Horizontal compression by a factor of $1 / 2$
c) Vertical translation up 3 units

- The range of $f(x)=-\sqrt{x-2}$ is: $f(x)=\Theta \sqrt{x-2}+0$
a) $\{y \in \mathfrak{R}, y \leq 2\}$
b) $\{y \in \mathfrak{R}, y \geq 0\}$
C $\{y \in \mathfrak{R}, y \leq 0\}$
d) $\{y \in \mathfrak{R}, 0 \leq y \leq 2\}$

2. Determine if each relation represents a function, then state its domain and range:

| | |
| :--- | :--- | :--- |
| | |

\qquad
3. Consider the parent function $f(x)=\sqrt{x}$. Write the equation of the function after the following transformations: a horizontal reflection, a vertical stretch by a factor of 2 , and a vertical translation 4 units up. Use the notation $g(x)$ for the new function.

$$
g(x)=2 \sqrt{-x}+4
$$

4. If $g(x)=\frac{1}{2}(x-4)^{2}-1, \quad x \leq 4$, determine:

a) the equation of its inverse, $g^{-1}(x)$

$$
\begin{aligned}
x & =\frac{1}{2}(y-4)^{2}-1 \\
2 \cdot(x+1) & =\frac{1}{2}(y-4)^{2} \cdot 2 \\
\sqrt{2(x+1)} & =\sqrt{(y-4)^{2}} \quad \therefore g^{-1}(x)=-\sqrt{2(x+1)}+4 \\
-\sqrt{2(x+1)} & =y-4 \\
-\sqrt{2(x+1)}+4 & =y
\end{aligned}
$$

b) $g^{-1}(7)$

$$
g^{-1}(7)=-\sqrt{2(7+1)}+4
$$

$$
=-\sqrt{2 \cdot 8}+4
$$

$$
=-4+4
$$

$$
g^{-1}(7)=0
$$

5. The graph of $h(x)$ is shown below.
a) Graph $h^{-1}(x)$ on the same grid then state its domain and range.

$$
\begin{aligned}
& A(1,4) \rightarrow A^{\prime}(4,1) \\
& B(3,-2) \rightarrow B^{\prime}(-2,3) \\
& C(5,-4) \rightarrow C^{\prime}(-4,5)
\end{aligned}
$$

$$
\text { Domain of } h^{-1}(x):\{x \in R \mid x \geqslant-4\}
$$

$$
\text { Range of } h^{-1}(x):\{y \in \mathbb{R}\}
$$

a) Is $h^{-1}(x)$ a function? If yes, justify. If not, state the restriction on the domain of $h(x)$ such that both $h(x)$ and $h^{-1}(x)$ would be functions.

No, b/c it does not pas VLT
Restriction

$$
D:\{x \in R \mid x \leqslant 5\} \text { or } D:\{x \in R \mid x \geqslant 5\}
$$

\qquad

$$
a_{g(x)=2 f^{7}(x-3)+0}^{k=1}{ }^{d=3} c
$$

6. a) The graph of $f(x)$ is shown below. Sketch the graph of $g(x)=2 f(x-3)+0$

$$
\begin{aligned}
& (x, y) \rightarrow\left(\frac{x}{k}+c, a \cdot y+c\right) \\
& (x, y) \rightarrow(x+3,2 y+0) \\
& A(-2,0) \rightarrow A^{\prime}(-2+3,2 \cdot 0)=(1,0) \\
& B(0,2) \rightarrow B^{\prime}(0+3,2 \cdot 2)=(3,4) \\
& C(3,-1) \rightarrow C^{\prime}(3+3,2 \cdot 1+0)=(6,-2)
\end{aligned}
$$

b) Write the mapping notation of the point (x, y) on $f(x)$ transformed into its image point on $g(x)$:

$$
(x, y) \longrightarrow(\quad, \quad)
$$

7. Sketch each relation on the grids provided. State the domain and range of each:

$$
(x, y) \rightarrow(-x-5,3 y)
$$ asymptotes

a) $\left.f(x)=\left(\frac{21}{x-5}\right)+4\right) \rightarrow \begin{aligned} & x \neq 5 \\ & y \pm 4\end{aligned}$

D: $\{x \in R \mid x \neq 5\}$
R: $\{y \in R \mid y \neq 4\}$
g=-5 $A(0,0) \xrightarrow{A^{\prime}(-5,0)}$
$4=-$ $B(1,1) \rightarrow B^{\prime}(-1-5,3 \cdot 1)=(-6$ $C(4,2) \rightarrow C^{\prime}(-9,6)$

D: $\{x \in R \mid x \leqslant-5\}$
R: $\{y \in R \mid y \geq 0\}$

Date:
c) $\quad h(x)=\frac{1}{2}(x+2)^{2}+2$

$c(0,0) \rightarrow(-2,2)\{x \in R\}$
R: $\quad\{y \in R \mid y \geqslant 2\}$
d) $k(x)=-\sqrt{\frac{1}{2}(x)}+5$

D: $\{x \in R \mid x \geqslant 0\}$
R: $\{y \in R \mid y \leqslant 5\}$
9. State the parent function $f(x)$ and the equation of each of the graphs below, $g(x)$ and $h(x)$, after the transformations applied to the parent function.

