Unit Review -Line Segments

1. Given the following points: $\mathrm{Y}(6,-1)$ and $\mathrm{O}(-3,5)$, find:
2. Given the circle $x^{2}+y^{2}=16$, state its center and radius: Center $(0,0)$ radius is 4

$$
\begin{gathered}
\sqrt[>]{r^{2}}=\sqrt{16} \\
r=4
\end{gathered}
$$

3. The point $(6,-3)$ is on a circle that has its centre at $(0,0)$. Find the equation of the circle.

Sty 1

$$
\begin{aligned}
(x-h)^{2}+(y-k)^{2} & =r^{2} \\
(6-0)^{2}+(-3-0)^{2} & =r^{2} \\
36+9 & =r^{2} \\
\sqrt{45} & =\sqrt{r^{2}}
\end{aligned}
$$

$$
r=\sqrt{45}
$$

Step 2

$$
\begin{gathered}
x^{2}+y^{2}=(\sqrt{45})^{2} \\
O R \\
x^{2}+y^{2}=45
\end{gathered}
$$

4. If the midpoint of a line segment is at $\mathrm{M}(-2,-1)$ and one endpoint is at $\mathrm{A}(1,4)$. Find the coordinates of the other endpoint, P .

$$
\underbrace{A(-2,-1)}_{P(x, y)}
$$

$$
\begin{aligned}
2 \cdot \frac{(x+1)}{2} & =-2 \cdot 2 \\
x+1 & =-4 \\
x & =-4-1 \\
x & =-5
\end{aligned}
$$

$$
\text { 2. } \begin{aligned}
\frac{(y+4)}{2} & =-1.2 \\
y+4 & =-2 \\
y & =-6
\end{aligned}
$$

$$
\therefore P(-5,-6)
$$

$$
\begin{aligned}
& \text { a. Length of YO } \\
& \overline{y_{0}}=\sqrt{(-3-6)^{2}+[5-(-1)]^{2}} \\
& =\sqrt{81+36} \text { either corrected }
\end{aligned}
$$

$$
\begin{aligned}
& m_{y_{0}}=\frac{5-(-1)}{-3-6}=\frac{5+1}{-9}=-\frac{6}{9}=-\frac{2}{3} \\
& \text { b. Midpoint of YO } \\
& M_{y_{0}}=\left(\frac{-3+6}{2}, \frac{5+(-1)}{2}\right) \\
& =(1.5,2) \\
& M(1.5,2) \\
& \text { d. Equation of the line } \mathrm{YO} \\
& m=-2 / 3 \quad Y(6,-1) \\
& y=m(x-p)+q \\
& y=\frac{-2}{3}(x-6)^{-1} \\
& y=\frac{-2 x}{3}+\frac{2 \cdot 6}{3}-1
\end{aligned}
$$

5. A quadrilateral has vertices $S(-2,5), T(5,2)$, $\mathrm{O}(4,-4), \& \mathrm{P}(-3,-1)$. Use all applicable skills from this unit to determine what type of quadrilateral "STOP" is - be as specific as possible. Show ALL your calculations.
What's your plan? IE: What do you need to calculate?
Plan: calculate the length of epoch
Step 1 line segment

$$
\begin{aligned}
& \overline{P_{S}}=\sqrt{(-1-5)^{2}+[-3-(-2)]^{2}}=\sqrt{36+1}=\sqrt{37} \quad \overline{P S}=\overline{O T} \\
& \overline{O T}=\sqrt{(4-5)^{2}+(-4-2)^{2}}=\sqrt{1+36}=\sqrt{37} \quad \overline{S T}=\overline{P_{O}} \\
& \overline{S T}=\sqrt{(-2-5)^{2}+(5-2)^{2}}=\sqrt{49+9}=\sqrt{58} \\
& \overline{P_{O}}=\sqrt{(-3-4)^{2}+[-1-(-4)]^{2}}=\sqrt{49+9}=\sqrt{58}
\end{aligned}
$$

Step $2 m_{p s}=\frac{-1-5}{-3-(-2)}=\frac{-6}{-1}=6$
$m_{P S}=m_{O T} \bar{P} S \| \overline{O T}$

$$
\begin{aligned}
& m_{O T}=\frac{-4-2}{4-5}=\frac{-6}{-1}=6 \\
& m_{S T}=\frac{2-5}{5-(-2)}=\frac{-3}{7} \\
& m_{P_{0}}=\frac{-4-(-1)}{4-(-3)}=\frac{-3}{7}
\end{aligned}
$$

Conclusion
Since there are 2 pairs of parallel and equal sides, it's a parallelogram.
6. A triangle has vertices with coordinates $R(4,-4), A(-5,-4)$ and $T(1,2)$. Find the equation of the median from R to the midpoint of side TA.
What's your plan? IE: What do you need to calculate?
Step 1: Midpoint of $\overline{T A}$

$$
S(x, y)=\left(\frac{-5+1}{2}, \frac{-1+2}{2}\right)=(-2,-1)
$$

Step 2:

$$
m_{S R}=\frac{-4-(-1)}{4-(-2)}=\frac{-3}{6}=-1 / 2=-0.5
$$

Step 3

$$
\begin{aligned}
m & =-0.5 \quad s(-2,-1) \\
y & =m(x-p)+9 \\
y & =-0.5[x-(-2)]+(-1) \\
y & =-0.5(x+2)-1 \\
y & =-0.5 x-1-1
\end{aligned}
$$

$$
\therefore y=-0.5 x-2
$$

7. A right triangle has vertices $\mathrm{C}(-2,2), \mathrm{T}(0,6)$, $\mathrm{W}(4,4)$. Verify that the midpoint of the hypotenuse is equidistant from all three vertices.
What's your plan? IE: What do you need to calculate?
$\overline{C \omega}$ is the hypotenuse.

$$
\begin{gathered}
M_{C \omega}=\left(\frac{-2+4}{2}, \frac{2+4}{2}\right)=(1,3) \\
\overline{C M}=\sqrt{(-2-1)^{2}+(2-3)^{2}}=\sqrt{9+1}=\sqrt{10} \\
\overline{M \omega}=\sqrt{(4-1)^{2}+(4-3)^{2}}=\sqrt{9+1}=\sqrt{10} \\
\overline{T M}=\sqrt{(1-0)^{2}+(3-6)^{2}}=\sqrt{1+9}=\sqrt{10} \\
\overline{C M}=\overline{M \omega}=\overline{T M}
\end{gathered}
$$

NOTE : $\overline{C W}$ is the diameter of a circle.
8. \triangle MAN has with vertices at $\mathrm{M}(-3,5), \mathrm{A}(-6,-7)$, $\mathrm{N}(4,-1)$. Determine the length of the median from M to AN.
What's your plan? IE: What do you need to calculate?
Step: Midpoint of $\overline{A N}$

$$
T(x, y)=\left(\frac{-6+4}{2}, \frac{-7+(-1)}{2}\right)=(-1,-4)
$$

Step 2 : $\overline{M T}=\sqrt{[-3-(-1)]^{2}+[5-(-4)]^{2}}$

$$
\begin{aligned}
& =\sqrt{(-3+1)^{2}+(5+4)^{2}} \\
& =\sqrt{4+81} \\
& =\sqrt{85}
\end{aligned}
$$

\therefore The length of the median from M to AN is $\sqrt{85}$
prime length
9. Line segments IN and ON are equidistant. Determine the values of a if $\mathrm{I}(-6,-4), \mathrm{N}(-2,-1)$, and $\mathrm{O}(1, \mathrm{a})$.

$$
\begin{aligned}
& \overline{1 N}=\sqrt{[-6-(-2)]^{2}+[-4-(-1)]^{2}}=\sqrt{16+9}=\sqrt{25}=5 \\
& \overline{O N}=\sqrt{(-2-1)^{2}+(-1-9)^{2}} \\
& (5)^{2}=\left(\sqrt{9+(-1-9)^{2}}\right)^{2} \rightarrow \begin{array}{l}
\text { square exch } \\
\text { side }
\end{array} \\
& 25=9+(-1-a)^{2}
\end{aligned}
$$

$$
\sqrt{16}=\sqrt{(-1-9)^{2}} \longrightarrow \begin{aligned}
& \text { square root } \\
& \text { each side }
\end{aligned}
$$

 each side

$$
\therefore \quad a=-5,3
$$

$$
5=-a
$$

$$
a=-5
$$

10. Line segment HI has $\mathrm{H}(3,-1)$. The length of HI is $\sqrt{40}$. What could the coordinates of I be?

$$
H I=\sqrt{(x-3)^{2}+(y+1)^{2}}
$$

$$
(\sqrt{40})^{2}=\left(\sqrt{(x-3)^{2}+(y+1)^{2}}\right)^{2} \begin{aligned}
& \text { square each } \\
& \text { side }
\end{aligned}
$$

$$
\begin{aligned}
& x-3=6 \quad y+1=2 \quad I_{1}(\eta, 1) \\
& I_{2}(9,-3) \\
& I_{3}(-3,1) \\
& \begin{cases}y+1=-2 \\
y=-3 & I_{4}(-3,-3)\end{cases} \\
& \text { Sonar. } \sqrt{2} \sqrt{(x-3)^{2}}=\sqrt{4} \quad \sqrt{(y+1)^{2}}=\sqrt{36} \\
& \left.\begin{array}{ccc}
x-3=2 \\
1 x=5 \\
0 R \\
x-3=-2 \\
x=+1
\end{array}\right\} \begin{array}{lll}
y+1=6 & I_{5}(5,5) \\
y=5 & I_{6}(5,-7) \\
y+1=-6 & I_{7}(1,5) \\
y=-7 & I_{8}(1,-7)
\end{array}
\end{aligned}
$$

11. $\triangle \mathrm{PET}$ is isosceles with vertices at $\mathrm{P}(4,-1)$, $\mathrm{E}(-1,0), \mathrm{T}(3,-6)$. The two equal sides are PE and PT. Verify that the median from P to ET is also an altitude.
What's your plan? IE: What do you need to calculate?
Step 1: $M_{E T}(x, y)=\left(\frac{-1+3}{2}, \frac{0+(-6)}{2}\right)=(1,-3)$
Step 2: Slope of ET
$m_{E T}=\frac{-6-0}{3-(-1)}=\frac{-6}{4}=-3 / 2$
$m_{M P}=\frac{-1-(-3)}{4-1}=\frac{-1+3}{3}=2 / 3$
$m_{E T}$ is opp. reciprocal of $m_{\text {mp }}$ therefore they're perpendicular. Line segment $M P$ is an altitude.
12. A circle with the equation $x^{2}+y^{2}=25$ has its centre at $(0,0)$. A chord of the circle has its end points at $\mathrm{M}(-2,6)$ and $\mathrm{E}(-6,-2)$.
Determine the equation of the perpendicular bisector of ME and verify that the perpendicular bisector passes through the centre of the circle.
What's your plan? IE: What do you need to calculate?
1) $x^{2}+y^{2}=5^{2}, r^{2}-5^{2} \rightarrow r=5 \quad$ Po in
2) $T(x, y)=\left(\frac{-6+(-2)}{2}, \frac{6+(-2)}{2}\right)=(-4,2)^{2}$
3) $m_{E M}=\frac{-2-6}{-6-(-2)}=\frac{-8}{-4}=2 \quad m_{\text {bisector }}=-1 / 2$
4) $m_{\text {bisector }}=-1 / 2 \quad T(-4,2)$
$m_{\text {bisector }}=-1 / 2 \quad T(-4,2)$
$y=\frac{-1}{2}[x-(-4)]+2$
$y=-0.5(x+4)+2$$~\left[\begin{array}{c}y=-0.5 x-2+2 \\ y=-0.5 x \\ \text { OR } \\ y=-\frac{1}{2} x\end{array}\right]$
Answers:
aa. $\sqrt{117}=10.8$
b. $(1.5,2)$
c. $\frac{-2}{3}$
d. $y=\frac{-2}{3} x+3$ or $2 x+3 y-9=0$
2. (0,0); 4

3. opposite sides: 7.6 and 6.1; opposite slopes: $\frac{-3}{7}$ and 6 ; parallelogram $\quad 6 . y=\frac{-1}{2} x-2$ or $x+2 y+4=0 \quad$ 7. all distances are $\sqrt{10}$
4. $\sqrt{85}=9.2 \quad$ 9. a is -5 or $3 \quad$ 10. $(1,5)$; $(5,5) ;(9,1) ;(9,-3) ;(5,-7) ;(1,-7) ;(-3,-3)$; or $(-3,1)$
5. the slope of the median is $\frac{2}{3}$ and the slope of ET is $\frac{-3}{2}$ so they're opposite reciprocals \quad 12. $y=\frac{-1}{2} x$
